Search results for " Nonmammalian"
showing 10 items of 126 documents
Evolution of yolk androgens in birds: development, coloniality and sexual dichromatism
2007
18 pages; International audience; Current theory recognizes the adaptive value of maternal effects in shaping offspring phenotypes in response to selective pressures and vindicates the value of these traits in fostering adaptation and speciation. Yolk androgens in birds are a relatively well-known maternal effect and have been linked to adaptations related to development, coloniality life, and sexual selection. We tested whether interspecific patterns of yolk androgen levels (androstenedione and testosterone) were related to interspecific variation in development, sexual selection, and coloniality. First, we found no relationship between androgen levels and duration of development as reflec…
Use of Medaka Fish as Vertebrate Model to Study the Effect of Cocoa Polyphenols in the Resistance to Oxidative Stress and Life Span Extension.
2018
Oxidative stress (OS) can induce cell apoptosis and thus plays an important role in aging. Antioxidant foods protect tissues from OS and contribute to a healthier lifestyle. In this study, we described the used of medaka embryos (Oryzias latipes) to study the putative antioxidant capacity of dietary cocoa extract in vertebrates. A polyphenol-enriched cocoa extract regulated the expression of several genes implicated in OS, thereby protecting fish embryos from induced OS. The cocoa extract activated superoxide dismutase enzyme activity in embryos and adult fish tissues, suggesting a common mechanism for protection during embryonic development and adulthood. Furthermore, long-term feeding of …
The Drosophila Hox gene Ultrabithorax acts both in muscles and motoneurons to orchestrate formation of specific neuromuscular connections
2016
Hox genes are known to specify motoneuron pools in the developing vertebrate spinal cord and to control motoneuronal targeting in several species. However, the mechanisms controlling axial diversification of muscle innervation patterns are still largely unknown. We present data showing that the Drosophila Hox gene Ultrabithorax (Ubx) acts in the late embryo to establish target specificity of ventrally projecting RP motoneurons. In abdominal segments A2 to A7, RP motoneurons innervate the ventrolateral muscles VL1-4, with VL1 and VL2 being innervated in a Wnt4-dependent manner. In Ubx mutants, these motoneurons fail to make correct contacts with muscle VL1, a phenotype partially resembling t…
Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting.
2016
Summary Most neuronal populations form on both the left and right sides of the brain. Their efferent axons appear to grow synchronously along similar pathways on each side, although the neurons or their environment often differ between the two hemispheres [1–4]. How this coordination is controlled has received little attention. Frequently, neurons establish interhemispheric connections, which can function to integrate information between brain hemispheres (e.g., [5]). Such commissures form very early, suggesting their potential developmental role in coordinating ipsilateral axon navigation during embryonic development [4]. To address the temporal-spatial control of bilateral axon growth, we…
Autophagy is required for sea urchin oogenesis and early development.
2016
SummaryAutophagy is a major intracellular pathway for the degradation and recycling of cytosolic components. Emerging evidence has demonstrated its crucial role during the embryo development of invertebrates and vertebrates. We recently demonstrated a massive activation of autophagy in Paracentrotus lividus embryos under cadmium stress conditions, and the existence of a temporal relationship between induced autophagy and apoptosis. Although there have been numerous studies on the role of autophagy in the development of different organisms, information on the autophagic process during oogenesis or at the start of development in marine invertebrates is very limited. Here we report our recent …
Perturbation of Developmental Regulatory Gene Expression by a G-Quadruplex DNA Inducer in the Sea Urchin Embryo.
2018
The G-quadruplex (G4) is a four-stranded DNA structure identified in vivo in guanine-rich regions located in the promoter of a number of genes. Intriguing evidence suggested that small molecules acting as G4-targeting ligands could potentially regulate multiple cellular processes via either stabilizing or disruptive effects on G4 motifs. Research in this field aims to prove the direct role of G4 ligands and/or structures on a specific biological process in a complex living organism. In this study, we evaluate in vivo the effects of a nickel(II)-salnaphen-like complex, named Nisaln, a potent G4 binder and stabilizer, during embryogenesis of the sea urchin embryo. We describe developmental de…
Hsp40 Is Involved in Cilia Regeneration in Sea Urchin Embryos
2003
In a previous paper we demonstrated that, in Paracentrotus lividus embryos, deciliation represents a specific kind of stress that induces an increase in the levels of an acidic protein of about 40 kD (p40). Here we report that deciliation also induces an increase in Hsp40 chaperone levels and enhancement of its ectodermal localization. We suggest that Hsp40 might play a chaperoning role in cilia regeneration.
Sema3a plays a role in the pathogenesis of CHARGE syndrome
2018
CHARGE syndrome is an autosomal dominant malformation disorder caused by heterozygous loss of function mutations in the chromatin remodeler CHD7. Chd7 regulates the expression of Sema3a, which also contributes to the pathogenesis of Kallmann syndrome, a heterogeneous condition with the typical features hypogonadotropic hypogonadism and an impaired sense of smell. Both features are common in CHARGE syndrome suggesting that SEMA3A may provide a genetic link between these syndromes. Indeed, we find evidence that SEMA3A plays a role in the pathogenesis of CHARGE syndrome. First, Chd7 is enriched at the Sema3a promotor in neural crest cells and loss of function of Chd7 inhibits Sema3a expression…
Axis Specification in Zebrafish Is Robust to Cell Mixing and Reveals a Regulation of Pattern Formation by Morphogenesis
2020
Summary A fundamental question in developmental biology is how the early embryo establishes the spatial coordinate system that is later important for the organization of the embryonic body plan. Although we know a lot about the signaling and gene-regulatory networks required for this process, much less is understood about how these can operate to pattern tissues in the context of the extensive cell movements that drive gastrulation. In zebrafish, germ layer specification depends on the inheritance of maternal mRNAs [1, 2, 3], cortical rotation to generate a dorsal pole of β-catenin activity [4, 5, 6, 7, 8], and the release of Nodal signals from the yolk syncytial layer (YSL) [9, 10, 11, 12]…
Nickel toxicity in P. lividus embryos: Dose dependent effects and gene expression analysis.
2018
Abstract Many industrial activities release Nickel (Ni) in the environment with harmful effects for terrestrial and marine organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is more limited. We used Paracentrotus lividus as a model to analyze the effects on the stress pathways in embryos continuously exposed to different Ni doses, ranging from 0.03 to 0.5 mM. We deeply examined the altered embryonic morphologies at 24 and 48 h after Ni exposure. Some different phenotypes have been classified, showing alterations at the expenses of the dorso-ventral axis as well as the skeleton and/or the pigment cells…